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Many oscillatory devices have the so-called wave link-system as the main 

construction element in which the disturbances propagate with a definite 

velocity which in a number of cases determines the frequency of the re- 

sulting oscillations. Examples of this are the devices known as the 

hydraulic ram. the vacuum tube generator with a long line load, th’e 

violin string, etc. Systems of this kind are described in the simplest 

cases by equations of the string type; the stationary states of which 

under known conditions can become unstable with respect to the initial 

or boundary values. If at the same time the boundary conditions are non- 

linear, then in the system there may occur oscillations of a definite 

amplitude. The corresponding problems for the examples given above have 

been considered in [l-3]. The results of these investigations have been 
obtained_through reduction of the problems to finite functional equa- 

tions which can be solved quite descriptively by graphical means with 

the aid of the Lemerey diagrams. The stability of the resulting periodic 

solutions was investigated by the method of Koenigs. 

The known D’ Alembert representation of the general solution is 

characteristic for the string for which these developments were made. 

This fact is essential for applicability of the indicated methods. How- 

ever, even when such representation takes place, the reduction to finite 

functional equations is possible only for the case when special initial 

and boundary conditions are given. If the given conditions are more 

general, then the computations carried out in [l-3] are not valid. 

It is possible to indicate the approach for the solution of this more 

general problem. This approach is not connected with any particular form 

of the initial or boundary conditions nor with the requirement for the 

D’ Alembert representation of the general solution. The respective 
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developments can be utilized in problems based on the one-dimensional 

wave equation. The first part of this work is devoted to the presentation 

of these questions. 

The second part of the paper analyses the oscillations in a system 

with piping and a shut-off valve containing a nonlinear spring. The 

linear formulation was investigated by Lur’e and Chekmarev [41. In this 

example, it is possible to apply the methods of [l-31 because of the 

special character of the boundary and the initial conditions. By con- 

sidering the valve mass and friction, the problem is reduced to differ- 

ential-difference equation of the neutral type. 

Here is considered only the case of the weightless valve and no 

friction. The character of the resulting oscillations is established and 

their stability investigated. 

1. Given the string equation 

UT’. = u,, (t = 01) (1.1) 

it is required to determine its solution for T > 0, n E [O, ~1 and the 

following initial and boundary conditions: 

lJ (s, 0) = cp (4, UT (x, 0) = 9 (2) (1.2; 

%(O,‘G)=FIU(O,‘G)l, u (I, t) = 0 (i-3) 

IIere 9, y are known functions, F is a given, generally nonlinear func- 

tion of its ar,Went. 

Let us introduce the function u(x, T) so that the Squation (1.1) can 

be replaced by the system 

11, = vr, U, r;= lls (1.4) 

Its solution is given as 

u===f~(T-~)+f*(T+Z), 2, = - fl (T - 2) + f? (r + 4 (‘1 .A) 

where f 1 and fZ are functions determined by the additional conditions. 

the boundary condition u( 1, T) = 0 gives 

fl (z - 4 = - fz (.t + 0 (t > ‘1) (1 .fi) 

Jhe first condition (1.3) is expressed as 

- 11’ (Q + fz’ w = 1: rfl w + 12 (T)l CT > 0) (1.7) 
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or, in view of (1.6) 

fz’ (Tc) + fz’ (r + 24 = F If2 (4 - fi (r + 201 (t > 0) (1.8) 

We have obtained a nonlinear differential-difference equation of 

neutral type for determination of the function f*(v). In order that the 

problem be formulated correctly, it is necessary to prescribe f2(-r) for 
0 G-r < 21. 'Ihe initial conditions (1.2) easily yield the relationships 

fi (- 4 + 12 (4 = cp (47 fr'(- 4 ?- 04 = 'II, (4 (O<z <1) (1.9) 

'Ihe prime indicates differentiation with respect to the whole argument. 

Therefore 

fz'(4 = $W(4 + $@)I (0 f 5 < 0 (1.10) 

Let us now determine f2’(n) for x E [I, 2EI. The initial conditions 

yield the formula 

fl'(--4 = -+W - 9pt (41 (O,(rfl) (1.21) 

kplacing x by 1 - T, we obtain 

Here and below the prime denotes differentiation with respect to T. 

Differentiating (1.6) with respect to -r, we express f1'(7 - 1) by 

f2'(~ + I); Equation (1.12) is then written as 

or finally 

Formulas (1.10) and (1.13) define f2'(-r) for T ti [O, 211. Integration 

determines f2(-r) to within a constant. The basic difficulty arises here: 
this constant cannot be determined without considering simultaneously 

the problem of finding the function fl(~). The only finite relationship 

containing only f2 which can be derived from the condition (1.6) and t!re 
first condition (1.9) 
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does not determine the constant of integration. In the given example, 

this difficulty is caused by the fact that the conditions (1.2), (1.3) 

do not contain a sufficient number of finite relationships between the 

functions u and v. If such a relationship existed, suppose, instead of 

the second condition (1.2), then there would be no need to determine the 

constant of integracion, since the function f*(5) for T E: [O, 211 could 

be given directly. 

The question can be answered in a different way. Let us consider an 

auxiliary problem differing from that formulated above by the fact that 

the value of u(x, -r) for n = 0 is assumed a certain function of time de- 

noted by V(T). The solution of such a problem is well known: it is 

formed by components depending separately on the initial and the bound- 

ary conditions. The initial conditions generate terms in the solution of 

the form 

x+r 
u(l) (5, T) = @ (x - z) + 0 (5 + T) 

2 +$ \ WJa (1.15) 

X--r 

Here 0 and ‘l’ are functions obtained by odd continuation with respect 

to the functions T and q~ relative to the points n = 0 and x = 1. The 

terms depending on the boundary conditions are described by the expres- 

sion 

U(Z) (2, T) = 5 {V [z - (2nZ + z)] - v [z - 2(nfl)Z + CC]} (1.16) 
n=o 

‘Ihe notation v(x) has the following meaning: 

i 

V(x) (x),0) 
v (4 = o 

(x < 0) 
(1.17) 

‘Ihe series in (1.16)) therefore, contains for each finite T a finite 

number of terms. ‘Ihe general solution is given by the sum of (1.16) and 

(1.17) 

U (5, z) = U(l) (CC, T) + U(2) (s, z) (1.18) 

Efferentiating (1.18) with respect to x and letting x = 0 we obtain 

U, (0, T) = - V’ (t) - 2 g 2)’ (T - 24 + CD’ (z) + Y (z) (1.19) 
n=1 

*calling the boundary condition (1.3), we arrive at the nonlinear 

differential-difference equation 
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T/” (z) + 2 5 2)’ (r - 24 + F [V (Z)] = W (z) + Y (z) (1.20) 
7l=l 

which is integrable for the initial condition V(0) = q(0). 

Obviously this procedure is not based on the D’Nembert representation 

of the general solution for the original equation. Thus, for the one- 

dimensional wave equation 

UXX - UTT + csu = 0 (1.21) 

under conditions (1.2), (1.3) in place of Equation (1.20), we obtain the 

integral-differential equation of the type 

V’ (z) + 2 5 v’ (z -24V(r- e)z+&- 

TI=l 0 

- 2c i 5 v (.c - e> zl;rL;n;; de + F [V (z)] = @’ (z) + y (t) (1.22) 

n=l2nZ 

2. Let us consider the oscillations in a system consisting of a flat 

channel of length 2 with a shut-off valve at the end x = 1. ‘Ihe valve 

mass will be denoted by M; let the valve be su ported by the spring with 

a nonlinear characteristic F = - Cy + Dy3 - Fy P . The spring is placed 

into a medium the resistance of which is proportional to the first power 

of velocity. In the stationary condition a fluid flows along the channel 

under a pressure of p,, applied at the end x = 0. The hydrodynamic quanti- 

ties referred to the stationary condition will be denoted by the index 0. 

It is” assumed that the fluid is slightly compressible while its flow 

velocity is small compared to the velocity of sound. Considered are 

small deviations from the stationary condition caused by the sudden 

change in the pressure at the end n = 0 of the channel. These deviations 

will be denoted by V, p, p (velocity, pressure, density). 

Introducing the nondimensional variables 

v - vo 
u=-, 

vo 
q=P-Po 

PO 
(2.4) 

it is not difficult to obtain the equations 

UT = - hqt, UC == - hq, (2.2) 

as consequence of the hydrodynamic equations for the condition that the 

perturbations of all quantities are small compared to their stationary 
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values, and neglecting the products of small quantities compared to the 

linear terms; while at the same time introducing the notation 

z+!, E=+, h=p$& (2.3) 

(c is the velocity of sound in the unperturbed motion of the fluid). 

‘Ihe boundary conditions will be given in the form [dl 

Q (0, r) = - -+ 11, (z) (2.4) 

IIere y is a given function. For x = 1 the boundary condition is de- 

termined by the valve motion. If y denotes valve displacement (spring) 

from neutral position of the spring, then the equation of motion for the 

valve is of the form 

M$+k$+Cy-Dy3+Fy6=Qp(l,t) (2.5) 

Here R is the cross-sectional area of the valve, k is the damping CO- 

efficient. 

Let us utilize the stationary equilibrium condition of the valve 

@JO = Cy, - Q/o3 + F.yo6 

and introduce the nondimensional variable n and the parameters 

11= 
Y - Yo MC~ Yo 

-, @=7slpo, n=,QcY” 
YO 1 oy, ’ 

Qp,Jil = Cy, - ~DY,,~ + 5Fy,,S 

- Qp& = 3Dyo3 - 10Fy,S, - !2p06, = Dya3 - 108’~~~ (2.6) 

QP,& L- 5Fy,,5, 62p,6, = Fyob 

Let us write (2.5) in the following; form (dot denotes differentiation 

with respect to T): 

(2.7) 

We relate q with the variables ~(1, -r) and q(l, T). The equation of 

fluid flow through the valve parts is 

C22a= +iyJf+ (2.8) 

!lere u. is tile discharge coefficient, 13 is the port width. liquation 

(2.8) is put in the fomi 

Qv, (1 -t u) = “by0 (1 + 7) J/2z * (1 + q) 
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or using the stationary form of Equation (2.8) and the smallness of the 

quantities u and 7 

rl=u(l,q-Pq(l,q ( P= !+, &2L) 
cap0 

(2.9) 

Note that p > 0, since the equation of state is of the form 

p. = const pax (%>I) 

For simplicity, the initial conditions will be 

for fluid 

for valve 

u(E,O) = 0, q(E*W=O 

11(O) = 0, i(O) = 0 

(2.10) 

given in the form: 

12.li) 

(2.12) 

?he system of Equations (2.3) is satisfied by the expressions 

u e - F(r - E) + f(r + E), -hq=F(Z-Q+f(7+t) (2.13) 

for arbitrary functions F and f; the form of these functions is deter- 

mined by additional conditions. As is shown by the condition (3.4) 

F (@ + f w = II, (4, z>o (2.14) 

Using this relationship we write !'quations (2.13) in the form 

u=-F(t--)--((t+,~)+~(t+5) (2.15; 

- hq = F (z - E) - F (f + E) + d, (r -I- 8 (2.16) 

The variable q(~) will b e expressed according to these formulas and _ 

(3.3) by 

~~=(~-1)F(z-l)-((~-/-1)F(z+1)+(~+.1)~(rtI)~ 

--Ahvq(i,r)+u(l,T) (2.17) 

where 

y= f-=22_ 
2h 

(2.18) 

The initial conditions (2.11), along with (3.1'.), allow one to deter- 

illine the function F(T) for - 1 Q T g 1. ::'e have 
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(-1 \<r<O) F(T)={ 0;) ( O<T<i) 
(2.19) 

Substituting (2.17) into (2.7) we arrive at the differential-differ- 

ence equation of second order and neutral type relative to the function 

F(s). The fact that it was possible to determine F(T) in the initial in- 

terval of T values using the boundary condition (2.4) and the initial 

conditions (2.11) was decisive for the possibility of present applica- 

tion of the methods of [l-3]. 

Let us restrict ourselves, for simplicity, to the case of !I = 0, 

k = 0. ‘Ihen the boundary condition for the valve becomes 

while the initial conditions (2.12) are omitted. 

Substituting Expression (2.17) for n into (2.20) and using (2.16) for 

determination of the function F(T), we obtain the functional equation 
6 

q = 2 68 [- hvq + ulS (2.21) 
s=1 

For brevity here and below, we use q instead of q(1, T) and similarly 

for u. Let us introduce the variables 8, < by means of the relations 

fJ = -Aqcoscp+ usincp, c= -kqsincp-ucoscp 

Then Equation (2.21) can be easily reduced to 

5 = i EJY, &r = - hv,%r - v , e, = 

s=1 
-- 

(VI = 1/i + vz, s = 2,3,4,5) 

We will assume that 

It is convenient to represent on a single drawing 

- Aq, - u, F(-r - 1)) F(T + 1) (Fig. 1). We will show 

the coordinate axes 

the axes j and 0 on 

the same figure. Their orientation relative to the previous axes is, 

apparently, determined by the value of the parameter v. Let us draw the 

curve of the function (2.23) in Fig. 1. With respect to the coordinate 

system F(T - l), F(T + 1) th is curve is a characteristic curve of the 

functional equation ( 2.21). ‘lhe solution of this equation can be effected 

(co1 IfI = v) (2.22) 

- hvrlf% S (2.23) 
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by the graphical method of Lemerey [l-31. We will seek a periodic solu- 

tion of period 2. The corresponding closed polygon is represented by a 

Fig. 1. 

square, the two opposite peaks of which rest on the characteristic curve, 
and the other two on the straight line F(T - 1) = F(T + 1). ‘lhe following 
relationships must be fulfilled for the coordinates of the square peaks 
1 and 2 lying on the characteristic curve 

We add here Equation (2.23) for the points (gl, 6,) and (&, e2) 

t;i = i e,e:- (i = 1,2) (2.25) 
a=1 

Equations (2.24) to (2.25) form a system of four equations with four 
unknowns cl, f3,, &, e2. These equations can be easily solved for small 
9, when in the first approximation (gl = Of we have 

e1 = - g2 + a, I& = & or $$ ss8: = $J E, (U - ely (2.26) 
s-1 s=1 

We note inmediately the root 8, = 1/2a. It is rejected, since it cor- 
responds to the equality 8, = 0, = 1/2a, i.e. the coincidence of the 
peaks 1 and 2. ‘Rle remaining four roots, as can be easily verified, are 
determined from the biquadratic equation 

e,ea --le2--2 = 0 (2.27) 
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Here 

r1 = - 10 -$ 86 - 2aE, - E3, 

(2.28) 

4 $B~----O -$ E3--aaEz-- el 

From (2.27) we obtain 

Let us assume for simplicity that the order 

pared to unity is equal to s - 1; let Ed be of 

for 0= we obtain approximately two values 

(fql = _I!_ + _E 
85 Tl ’ 

(P), = 

of smallness of sS com- 

the order of unity. 'lhen 

7% -- 
Tl 

The assumption regarding the order of smallness of Ed permits one to 

consider y1 < 0, yZ > 0. Therefore 

4, = JQ + ;;, e*1 = - - 
r/ 

$+I!g (2.29) 

f,$2:=j,/ _ 2, 
Yl 

o,, ZZ - IJ‘- ;; (2.W) 

V!e thus obtain two limit cycles. They are shown in Fig. 1. Ihe small- 

ness of cp is connected with the large value of the parameter v. 

In the second limiting case of small v (q close to IT/~) we obtain in 

first approximation (9 = l/2 a) 

Cl = a - L, 01 = 02 

Equations (2.25) show that the given requirements cannot be satisfied; 

i.e. for 9 I: 7r1/2 there exists no solution with period 2. This statement 

is illustrated in Fig. 2 where the form of the characteristic curve is 

shown for 9 = r/2. 

The parameter v is expressed through-the quantities characterizing 

the stationary condition of the system as follows: 

1 - 15 1 - x-1 
y~-----~~~~~~ 

x-l VO -- 
Zh 2c 2 C 

It is supposed that v0 < c, therefore sufficiently 

K = C ,C,, 
P/ 

correspond to the large values of v. 

(2.31) 

large values of 

Let us pass to t!le stability investigation of the periodic solutions 

obtained. For this purpose we compute the relation \,?F(T - l)/dF(~ + 3)1 

for the limit motion; if this relation is larger than lmity stability 

takes place, if not then instability exists. 
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Let us differentiate (2.21) with respect to F(T + 3); using Formulas 

(2.15) and (2.16) for < = 1 we obtain 

,dF (Z - 1) 1 dF (z+ 3) - 

'Ibe right-hand side of (2.21), multiplied by (-A), is denoted by 0, 

with all terms in (2.32) included for the limit periodical motion. 'Xhe 

derivative 

[GY' (Z + 1) /dF (T + 3)]li, 

can be eliminated from (2.32) by means of the equation 

also originating from (2.21). From (2.32) and (2.33) it follows that 

dF (z - 1) (1 + h-1 acD / aq - ao, / au)Tim 

dF (r + 3) lim = (1 + h-1 aQ / aq + acn / au)~*m 

lhe following relations are valid 

(2.34) 

l3Q r3Q 8 
%G lim = 3% limaU 

- = sincp 

dQ aQ 83 - 
aq lim = 35 lim 3 - - - h cos cp (g&m 

ilence 

dF (z - 1) [l - (aQ / dO),i,,(cos cp f sin (p)12 

dF(T + 3) ltm = [I - (8Q / ~~),,,(cos ‘~-_“incp)l” 

For the case of small 9 > 0, the stability according to Koenigs 

apparently takes place for [&/TX31 lim < 0 or 

lhe condition obtained Gth respect to the order of magnitude of ss 

allOWS One t0 State that the latter inecpdity Can be Satisfied kJy the 
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Fig. 2. 

values of 8, 1 and 8,, (see (2.29)). The roots of 0,, and 8,, yield an 

opposite inequality. Thus, under these conditions the “outer” (Fig. 1) 

limit cycle is stable while the inner one is unstahle. 
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